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Objective: To formulate and evaluate oral disintegrating tablets (ODTs) of the
Published on: 14.02.2026 antidepressant mirtazapine using direct compression. This study comparatively
assesses the efficacy of various natural (Plantago ovata, dehydrated banana
powder) and synthetic (crospovidone, sodium starch glycolate, Ly coat) super

Pubh?hf.:d 72 .. disintegrants to develop a rapidly dissolving formulation suitable for patients
Futuristic Publications . .
with dysphagia.
: Methods: Fifteen formulations (F1-F15) were prepared by direct compression,
2026| All rights reserved. varying the type and concentration (2%, 4%, 6% w/w) of super disintegrants.

Pre-compression (micromeritics) and post-compression (hardness, friability,

weight variation, drug content, disintegration time) parameters were evaluated.

- Drug-excipient compatibility was assessed via FTIR. In-vitro dissolution
Chziive Commens studies were performed in 6.8 pH phosphate buffer, and release kinetics of the
Attribution 4.0 International | optimized formulation were analysed.
Results: All formulations exhibited good powder flow and produced tablets
with acceptable mechanical strength and content uniformity. Formulation F15,
containing 6% w/w Ly coat, demonstrated the most rapid drug release,
achieving 98.06% dissolution within 15 minutes, with a disintegration time of
40 seconds. The rank order of super disintegrant efficacy was Ly coat > Sodium
Starch Glycolate > Crospovidone > Dehydrated Banana Powder > Plantago
ovata. Kinetic analysis of F15 indicated the best fit for the Higuchi model
(R2=0.988), suggesting a diffusion-based release mechanism.
Conclusion: The study successfully demonstrates that direct compression is a
viable method for producing robust Mirtazapine ODTs. Ly coat, a
hydroxypropyl pea starch, at a 6% w/w concentration, was identified as the most
effective super disintegrant, yielding a formulation with superior in-vitro
dissolution performance.

License.

Keywords: oral disintegrating tablets (ODTs), mirtazapine, dysphagia,
hydroxypropyl pea starch.
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1. Introduction

The oral route remains the most preferred for drug
administration due to its convenience and patient
acceptance. However, conventional solid dosage
forms, such as tablets and capsules, present significant
administration challenges for specific patient
populations. Dysphagia, or difficulty in swallowing, is
a prevalent issue among paediatric, geriatric,
psychiatric, and bedridden patients, often leading to
poor medication adherence and subsequent
therapeutic failure. Orally disintegrating tablets
(ODTs) have emerged as a critical innovation to
address this clinical need. These dosage forms are
designed to disintegrate rapidly in the oral cavity upon
contact with saliva, eliminating the need for water and
combining the dosage accuracy of solid forms with the
ease of administration of liquids. Regulatory bodies,
including the U.S. Food and Drug Administration
(FDA) and the European Pharmacopoeia, define
ODTs by their rapid disintegration, typically within a
range of a few seconds to three minutes.

Mirtazapine, a noradrenergic and  specific
serotonergic antidepressant (NaSSA), is widely used
for the treatment of major depressive disorder. The
drug is frequently prescribed to psychiatric patients
who may exhibit non-compliance with conventional
medication regimens, making it an ideal candidate for
an ODT formulation that ensures proper dosing.
Furthermore, mirtazapine undergoes extensive first-
pass metabolism, resulting in an oral bioavailability of
only about 50%. An ODT offers the potential for pre-
gastric absorption from the oral mucosa, which could
bypass hepatic first-pass metabolism, thereby enhance
bioavailability and accelerate the onset of therapeutic
action—a  highly desirable characteristic for
antidepressant therapy. A key formulation challenge
with mirtazapine is its inherently bitter taste, which
must be adequately masked in an ODT to ensure
patient acceptability, typically by sweeteners and
flavouring agents.

This study employed direct compression as the
manufacturing method, a strategy chosen for its
simplicity, cost-effectiveness, and scalability, which
avoids the heat and moisture associated with wet
granulation or the high costs of lyophilization. The
success of directly compressed ODTs is critically
dependent on the incorporation of super
disintegrants—specialized excipients that facilitate
rapid tablet breakup even at low concentrations
(typically 1-10% w/w). This research undertakes a
systematic comparison of a diverse range of super
disintegrants. These include established synthetic
agents like crospovidone (CPV) and sodium starch
glycolate (SSG), a novel modified starch polymer (Ly
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coat), and natural alternatives such as Plantago ovata
and dehydrated banana powder. By evaluating these
agents at various concentrations, the study aims to
elucidate their relative impact on tablet performance
and identify an optimal formulation.

The primary objective of this research is to formulate
and evaluate Mirtazapine ODTs via direct
compression. The study aims to systematically
compare the effects of five different super
disintegrants at three distinct concentrations on the
physicochemical properties and in-vitro drug release
profiles of the tablets, ultimately identifying an
optimized formulation with rapid disintegration and
superior dissolution characteristics.

2. Materials and Methods
2.1. Materials

Mirtazapine (Pharma Grade) was procured from
Aurobindo pharma Ltd., Hyderabad, India. The super
disintegrants, including Plantago Ovata, Dehydrated
Banana powder, Crospovidone (CPV), Sodium Starch
Glycolate (SSG), and Ly coat (hydroxypropyl pea
starch), were obtained from Signet Chemical Corp.,
Mumbai, India. Other excipients, including
microcrystalline cellulose (Avicel), aspartame, talc,
and magnesium stearate, were also sourced from
reputable suppliers. All chemicals and reagents used
were of pharmaceutical or analytical grade.

2.2. Drug-Excipient Compatibility Studies (FTIR)

To investigate potential physicochemical interactions,
physical mixtures of mirtazapine with each excipient
were prepared. Infrared (IR) spectra were recorded
using a  Fourier-transform  infrared (FTIR)
spectrophotometer (Shimadzu-8400 S) over a wave
number range of 4000 to 400 cm—1. Samples were
prepared using the potassium bromide (KBr) disc
method. The resulting spectra of the physical mixtures
were compared with the spectrum of pure mirtazapine
to detect any shifts, disappearances, or appearances of
characteristic peaks that would indicate a chemical
interaction.

2.3. Preparation of Oral Disintegrating Tablets

Fifteen distinct formulations of Mirtazapine ODTs
were prepared by the direct compression method, with
compositions detailed in Table 1. All ingredients were
individually passed through a #60 mesh sieve to
ensure particle size uniformity. Mirtazapine and
microcrystalline cellulose were first blended, after
which the specified super disintegrant and other
excipients were added in geometric progression to
ensure a homogenous mixture. The final blend was
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lubricated with magnesium stearate and talc. Tablets
with a total weight of 100 mg each were compressed
using a hydraulic press. The compression force was
Table 1: Composition of Mirtazapine ODT Formulations (F1-F15)

carefully adjusted for each batch to achieve a target
hardness of 3—4 kg/cm2.

Ingredients (mg) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
Mirtazapine 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
Plantago Ovata 2 4 6 - - - - - - - - - - -
Dehydrated Banana powder - - -2 4 6 - - - - - - - - -
Crospovidone - - - - - - 2 4 6 - - - - - -
SSG - - - - - - - - - 2 4 6 - - -
Lycoat - - - - - - - - - - - - 2 4 6
Aspartame 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
M.C.C Q.SQ.SQ.SQ.5SQ.5SQ.5SQ.5Q.5Q.5Q.5SQ.5Q.5Q.5Q.5SQ.S
Magnesium stearate 3 3 3 3 3 33 3 3 3 3 3 3 3 3
Talc 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Total weight 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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24.

Evaluation

of Powder Blends (Pre-

compression Parameters)

The flow properties of the powder blends for all 15
formulations were characterized according to official
pharmacopeial methods to assess their suitability for
direct compression.

Bulk and Tapped Density: Determined by
measuring the volume of a known mass of
powder in a graduated cylinder before and
after a specified number of taps using a tap
density tester.

Compressibility Index (Carr’s Index) and
Hausner’s Ratio: Calculated from the bulk
and tapped density values using the standard
formulas to predict the flowability and
compressibility of the powder blends.

Angle of Repose: Measured using the fixed
funnel method. The angle of the cone formed
by the powder pile relative to the horizontal
plane was calculated to assess inter-
particulate friction and predict powder flow.
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2.5. Evaluation of Compressed Tablets (Post-
compression Parameters)

General Appearance and Dimensions:
Tablets were visually inspected for any
defects such as capping, chipping, or
sticking. The thickness and diameter of three
randomly selected tablets from each batch
were measured using a calibrated Vernier
caliper.

Weight Variation: Twenty tablets from
each batch were individually weighed, and
the average weight and standard deviation
were calculated to determine compliance
with USP weight variation specifications.

Hardness and Friability: Tablet hardness
was measured for three tablets from each
batch using a Monsanto hardness tester.
Friability was determined for a sample of ten
tablets using an Electro lab friabilator
operated for 100 revolutions. A weight loss
of less than 1% was considered acceptable.
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Drug Content Uniformity: Ten tablets were
randomly selected, and one was crushed and
dissolved in 6.8 pH buffer. The solution was
filtered, diluted appropriately, and the
mirtazapine content was assayed using a UV-
Vis spectrophotometer (PG Instruments T60)
at a predetermined Amax of 236 nm to ensure
dose uniformity.

In-Vitro Dispersion Time: The time
required for a single tablet to completely
disperse in 10 mL of distilled water
maintained at 37+0.50C was recorded in
seconds.

2.6. In-Vitro Dissolution Studies

Dissolution testing was performed using a USP XXIV
dissolution apparatus (Type II, paddle method). One
tablet from each formulation was placed in 900 mL of
6.8 pH phosphate buffer, maintained at a constant
temperature of 37+0.50C. The paddle speed was set to
50 rpm. At predetermined time intervals (5, 10, 15, 20,

3.1. Drug-Excipient Compatibility

25, and 30 minutes), 5 mL aliquots of the dissolution
medium were withdrawn, filtered through a pre-filter,
and analysed for mirtazapine content
spectrophotometrically at 236 nm. An equal volume
of fresh, pre-warmed medium was replaced after each
sampling to maintain sink conditions.

2.7. Drug Release Kinetic Analysis

To elucidate the mechanism of drug release from the
optimized formulation, the in-vitro dissolution data
were fitted to four mathematical kinetic models: Zero-
order (cumulative % release vs. time), First-order (log
cumulative % remaining vs. time), Higuchi
(cumulative % release vs. square root of time), and
Korsmeyer-Peppas (log cumulative % release vs. log
time). The model that yielded the highest coefficient
of determination (R2) was considered the best fit for
describing the drug release pattern.

3. Results and Discussion

nittance (

3500 3000 2500

Wavenumber (cm™)

The FTIR spectra of pure mirtazapine and its physical
mixtures with the various excipients are presented in
Figure 1. The spectrum of pure mirtazapine showed
its characteristic absorption peaks. These principal
peaks were retained in the spectra of all physical
mixtures without any significant shifts or the
appearance of new peaks. This confirmed the absence
of any significant chemical interaction or
incompatibility between mirtazapine and the selected
excipients, a critical prerequisite for ensuring the
stability and performance of the final dosage form.
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1:
Mirtazapine and (B) Mirtazapine with excipients,
confirming chemical compatibility.

Figure FTIR spectra showing (A) Pure

3.2. Micromeritic and Physical Properties of
Tablets

The  pre-compression and  post-compression
evaluation parameters for all 15 formulations are
consolidated in Table 2. The angle of repose values
for the powder blends ranged from 26.240 to 30.680,
while Carr’s index values were between 10.53% and
18.30%. These results indicate good to fair flow
properties for all blends, confirming their suitability
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for the direct compression manufacturing process,
which relies on consistent powder flow into the die
cavity.
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The post-compression parameters demonstrate the
successful fabrication of robust tablets. The hardness
for all batches was consistently maintained within the
target range of 3—4 kg/cm2. Correspondingly, the
friability was well below the pharmacopeial limit of
1%, indicating that the tablets possessed sufficient
mechanical strength to withstand handling and
transportation. Weight variation and drug content
were also within acceptable official limits for all
formulations, ensuring dose accuracy and
uniformity.

A notable finding is the consistency of these
fundamental properties across all 15 formulations.
Despite the inclusion of five different super
disintegrants with varied chemical structures and

<
Flow Properties
(Carr's Index, inverted)

physical properties (e.g., natural gums, modified
starch, synthetic polymer), the core micromeritic and
mechanical characteristics of the tablets remained
stable and acceptable. This suggests that the base
excipient system, dominated by microcrystalline
cellulose (MCC), dictates the formulation's
manufacturability. MCC is well-known for its
excellent binding and compaction properties in direct
compression. The super disintegrants, used at low
concentrations (2-6% w/w), did not negatively impact
these crucial attributes. This validates the chosen
direct compression platform as a robust and versatile
system, capable of accommodating a wide range of
functional excipients without necessitating significant
process modifications, a key advantage for scalable
and cost-effective production.

Table 2: Consolidated Pre- and Post-Compression Evaluation of Formulations

Formulation Angle of Carr’s Index Hausner’s  Hardness Friability =~ Drug Dispersion

Code Repose (°) (%) Ratio (kg/cm?) (%) Content (%) Time (s)
(mean+SD) (meantSD) (mean+SD) (mean+SD) (mean+SD) (meantSD) (mean+SD)

F1 26.38+0.15 12.96+0.62 1.15£0.62  3.24+0.15  0.15£0.25 90.25+0.26 62+0.15

F2 27.42+0.14 11.32+0.59 1.13£0.26  3.15+0.26  0.26+0.23  87.26+0.15 69+0.96
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Formulation Angle of Carr’s Index Hagsner’s
Code Repose (°) (%) Ratio
(mean+SD) (mean+SD) (mean+SD)

F3 29.02+0.65 14.08+0.26 1.16+0.15
F4 27.26+0.52  11.54+0.14 1.13£0.15
F5 30.68+0.15 13.56+0.26 1.16+0.26
F6 29.26+0.26  10.53+0.32 1.12+0.48
F7 27.02+0.15 12.24+0.15 1.14+0.65
F8 30.62+0.48 14.75+0.62 1.17+0.59
F9 28.02+0.26  13.33+0.67 1.15+0.36
F10 26.24+0.17 18.30+0.65 1.22+0.62
F11 29.24+0.59 13.46+0.47 1.16+0.34
F12 28.56+0.14 11.11+0.64 1.13+0.26
F13 28.65+0.36  12.50+0.15 1.14+0.48
Fl14 29.49+0.59 11.32+0.26 1.13+0.32
F15 26.47+0.32 11.76+0.14 1.13+0.62
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3.3. Effect of Super disintegrants on In-Vitro
Disintegration and Dissolution

The functional performance of the super disintegrants
was the primary focus of this investigation. The in-
vitro dispersion times ranged from 30 seconds (F11)
to 75 seconds (F3), as shown in Table 2. While all
formulations meet the broader European
Pharmacopoeia definition for Oro dispersible tablets
(<3 min), the faster times are more desirable and align
better with patient expectations and FDA guidance,
which suggests a disintegration time of approximately
30 seconds or less.

The in-vitro dissolution profiles, presented in Figure
2 and summarized in Table 3, provide a more
discriminating measure of tablet performance. A
consistent trend was observed across all super
disintegrant types: increasing the concentration from
2% to 4% and finally to 6% w/w resulted in a
progressively faster rate and extent of drug release.

Hardness Friability =~ Drug Dispersion
(kg/cm?) (%) Content (%) Time (s)
(mean+SD) (mean+SD) (mean+SD) (mean+SD)
3.4740.36  0.25+0.56  89.26+0.21 75+0.65
3.63+0.10  0.14+0.75  92.15+0.33  74+0.25
3.47+0.01  0.59+0.14  86.26+0.42 71+0.14
3.7240.16  0.26+0.25  89.26+0.15 62+0.15
3.1540.26  0.24+0.23  92.14+0.14 59+0.26
3.4240.30  0.85+0.14  96.26+0.63 52+0.32
420+0.96  0.63+£0.23  98.56+0.14 49+0.25
3.15+0.10  0.47+0.52  97.14+0.26 52+0.16
3.26+0.01  0.96+0.65  89.26+0.14 30+0.32
3.1440.16  0.47+0.63  92.15+0.25 31£0.32
3.26+0.26  0.59+0.25  95.14+0.26 32+0.26
3.7840.30  0.15+0.14  99.65+0.32 35+0.26
3.59+0.96  0.32+0.26  98.59+0.36 40+0.02

This underscores the concentration-dependent effect
of these excipients.

A comparative analysis of the different super
disintegrant types at their highest concentration (6%
w/w) reveals a distinct order of efficacy based on the
rate of dissolution:

e F15 (Ly coat): Achieved 98.06% drug
release in just 15 minutes.

e F12 (SSG): Required 20 minutes to achieve
97.08% release.

o F9 (Crospovidone): Required 20 minutes to
achieve 97.23% release.

e F6 (Banana Powder): Required 25 minutes
to achieve 99.48% release.

e F3 (Plantago Ovata): Required 25 minutes
to achieve 98.26% release.
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Based on these results, formulation F15, containing
6% w/w Ly coat, was identified as the optimized
formulation, as it achieved near-complete drug release
in the shortest time frame. The overall rank order of
super disintegrant efficacy was determined to be Ly
coat > Sodium Starch Glycolate > Crospovidone >
Dehydrated Banana Powder > Plantago ovata.

The observed differences in performance can be
attributed to the distinct mechanisms of action of the
super disintegrants. Natural agents like Plantago
Ovata and banana powder primarily function through
the swelling of their mucilage content. While effective
at breaking the tablet apart, this can sometimes lead to
the formation of a viscous gel layer that may retard
subsequent drug dissolution from the dispersed
particles. In contrast, synthetic agents employ more
efficient mechanisms. SSG swells rapidly and
extensively in three dimensions, creating strong
disruptive forces, while crospovidone relies on a

combination of rapid water uptake via capillary action
(wicking) and strain recovery from compaction, with
minimal gelling. Ly coat, a hydroxypropyl pea starch,
is primarily known as a film-former but, in its
pregelatinized form, exhibits rapid hydration and
solubility. Its superior performance suggests that
instead of simply swelling, it may rapidly dissolve
within the tablet matrix, creating an extensive network
of porous channels. This allows for extremely rapid
water ingress and a swift collapse of the tablet
structure, facilitating faster drug particle exposure to
the dissolution medium. This indicates that for this
specific formulation, a mechanism based on rapid
matrix dissolution may be more efficient than those
relying solely on swelling or wicking.

Figure 2: Comparative in-vitro dissolution profiles of

Mirtazapine ODTs formulated with 6% w/w of
different super disintegrants (F3, F6, F9, F12, F15) in
6.8 pH phosphate buffer.

Table 3: Comparative In-Vitro Dissolution Data for Mirtazapine ODTs with 6% Super disintegrant

Time (min) F3 (Plantago Ovata) F6 (Banana Powder) F9 (Crospovidone) F12 (SSG) F15 (Ly coat)

5 32.15+0.10 39.46+0.44 35.16+0.41 34.18+0.59 49.26+0.54
10 52.16+0.54 60.17+£0.63 59.15+0.22 56.48+0.54 71.56+0.66
15 72.17+0.10 76.88+0.22 79.14+0.69 78.78+0.36 98.06+0.98
20 86.18+0.36 85.59+0.54 97.23+0.84 97.08+0.98 -
25 98.26+0.54 99.48+0.19 - - -
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3.4. Drug Release Kinetics

Formulation (F15)

of Optimized

The in-vitro dissolution data for the optimized
formulation, F15, were fitted to various kinetic models
to elucidate the underlying mechanism of drug release.
The results of this analysis, including the coefficient
of determination (R2) for each model, are presented in
Table 4. The original analysis suggested a Zero-order
release based on an R2 value of 0.965. However, a
more rigorous evaluation of the data reveals that the
Higuchi model provides a superior fit, with an R2
value of 0.988. A linear Higuchi plot signifies that the
rate of drug release is proportional to the square root
of time, which is characteristic of a diffusion-
controlled process from a porous matrix.

The Korsmeyer-Peppas model yielded a release
exponent (n) of 1.737. An 'n' value greater than 1
typically indicates super case-Il transport, a
mechanism involving polymer relaxation and erosion,

which is more common in controlled-release
swellable systems. The application of this model to an
ODT with a release profile under 15 minutes can be
misleading, as the rapid initial release can skew the
logarithmic plot and produce an artificially high n'
value. The most plausible interpretation of these
combined kinetic results is a multi-modal release
process. Initially, the tablet undergoes an extremely
rapid disintegration phase driven by the fast
dissolution of the Ly coat super disintegrant.
Following this, the rate-limiting step becomes the
diffusion of dissolved mirtazapine from the dispersed
particulate matrix (containing MCC and drug
particles) into the bulk dissolution medium, as
accurately described by the Higuchi model.

Figure 3: Drug release kinetic plots for the optimized
formulation (F15), showing (A) Zero-Order, (B) First-
Order, (C) Higuchi, and (D) Korsmeyer-Peppas
models.

Table 4: Release Kinetic Modelling Results for the Optimized Formulation (F15)

Kinetic Model

Zero-Order Qt=QO0+KO0t 0.965

First-Order logC=logC0—-K1t/2.303 0.830

Higuchi Q=KHt1/2 0.988

Korsmeyer-Peppas Mt/Moo=Ktn 0.934

A) Zero-Order Model|
100 R?=0.965

Cumulative % Release
Log % Drug Remaining

C) Higuchi Model %
Time | g2 = 0.988 (Best Fit)

Cumulative % Release
X
Log Cumulative % Release

Time (min®5)
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1.737
- B) First-Order Model
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4. Conclusion

This study successfully demonstrated the formulation
of Mirtazapine oral disintegrating tablets using a cost-
effective and scalable direct compression method. All
prepared  formulations  exhibited  satisfactory
physicochemical properties, including good powder
flow characteristics, robust mechanical strength, and
uniform dose content, validating the versatility of the
manufacturing platform.

A comparative evaluation of five different super
disintegrants at varying concentrations revealed a
clear hierarchy in functional performance. The rank
order of efficacy, based on the rate of in-vitro drug
dissolution, was determined to be Ly coat > Sodium
Starch Glycolate > Crospovidone > Dehydrated
Banana Powder > Plantago ovata.

The optimized formulation, F15, which incorporated
6% w/w Ly coat, exhibited superior performance,
achieving 98.06% drug release within an
exceptionally short period of 15 minutes. This result
highlights the significant potential of Ly coat, a
modified hydroxypropyl pea starch, as a highly
effective super disintegrant in ODT formulations. The
findings suggest that for achieving rapid drug release
from mirtazapine ODTs, a disintegration mechanism
based on the swift dissolution of the excipient matrix
to create porous channels can be more effective than
mechanisms solely reliant on particle swelling or
wicking. This work provides a robust formulation
platform for Mirtazapine ODTs that could improve
patient compliance and potentially enhance
therapeutic outcomes in the treatment of depression.
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