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drug—disease associations and prioritize repurposable candidates. This strategy

has advanced treatments for neurodegenerative, rare, and complex CNS disorders

such as multiple sclerosis, glioblastoma, and COVID-19 by predicting effective

therapies.
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INTRODUCTION

Artificial intelligence (AI) has emerged as a transformative force in modern biomedical research,
particularly in the fields of drug repurposing and precision medicine. By leveraging vast and complex biological
datasets, Al technologies such as machine learning and deep learning have significantly accelerated the
identification of new therapeutic uses for existing drugs, reducing both development costs and timelines. These
computational approaches integrate multiple layers of biomedical information, including genomic profiling,
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protein interactions, and pharmacokinetic analysis, to predict potential drug—disease relationships with higher
accuracy and efficiency than traditional methods.

In recent years, Al has played a pivotal role in addressing major challenges in neurodegenerative
disorders and central nervous system (CNS) diseases, such as multiple sclerosis (MS) and glioblastoma
(GBM). These conditions are often characterized by complex pathophysiology, limited therapeutic options, and
poor clinical outcomes. Through network models and multi-omics integration, Al systems can analyse intricate
molecular networks to uncover hidden therapeutic targets and mechanisms of resistance. Moreover, the
incorporation of neuroimaging data and electronic health records (EHR) has enabled more personalized and
data driven clinical decision-making, advancing the goals of precision medicine.

Innovations in nanotechnology delivery and computational drug discovery have further enhanced
AT’s role in overcoming barriers such as the blood—brain barrier, a major obstacle in CNS therapy. Advanced
tools like graph neural networks and generative models are now being utilized to design novel drug candidates
and optimize their pharmacological properties. However, challenges such as data heterogeneity, model
interpretability, and the need for rigorous clinical validation remain crucial for ensuring reliability and real-
world applicability.

Ultimately, the integration of Al into translational medicine represents a paradigm shift toward more
effective, personalized, and accessible healthcare. As interdisciplinary collaborations grow, Al-driven strategies
are expected to revolutionize therapeutic innovation and improve patient outcomes across a wide range of
neurological and systemic diseases.

MATERIALS AND METHODS

1. Data Collection and Integration

1.1 Data Sources
The research began with the systematic collection of biomedical data relevant to central nervous system
(CNY) disorders, primarily glioblastoma multiforme (GBM) and multiple sclerosis (MS). Data were obtained
from several publicly available databases, including:
e Drug Bank and PubChem for detailed drug-related data such as molecular structures,
pharmacokinetic profiles, and known drug—target interactions.
o The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) for gene expression
and mutational datasets related to GBM and MS.
e Protein Data Bank (PDB) for structural data of target proteins.
e ClinicalTrials.gov for information on existing and ongoing therapeutic trials.
e Electronic Health Records (EHR) datasets (de-identified) and neuroimaging repositories for
clinical and diagnostic patterns associated with disease progression.
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1.2 Data Integration Framework

Data from multiple sources were pre-processed to remove redundancy, missing values, and noise.
Structured and unstructured datasets were merged through a multi-omics integration framework, enabling the
simultaneous analysis of genomic, proteomic, transcriptomic, and pharmacokinetic layers.
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Each dataset was standardized using Z-score normalization and mapped onto a common biological
reference network to ensure uniformity in data representation.

2. Al-Based Computational Framework

2.1 Overview

An integrated artificial intelligence (AI) platform combining machine learning (ML) and deep
learning (DL) algorithms was developed to identify potential drug repurposing opportunities for CNS diseases.
The framework aimed to reduce research timelines and enhance predictive accuracy in identifying effective
therapeutic agents.

2.2 Preprocessing and Feature Selection
Before training the Al models, high-dimensional biological data underwent feature extraction using
techniques such as:
e Principal Component Analysis (PCA) to reduce dimensionality.
e Autoencoders for unsupervised pattern recognition.
e Recursive Feature Elimination (RFE) to identify key biomarkers associated with disease
progression
o The refined feature sets were used to train supervised learning models capable of predicting drug—
disease relationships.

2.3 Predictive Model Construction

The following algorithms were implemented and compared for predictive performance:

e Random Forest (RF) and Support Vector Machine (SVM) for drug classification and
prioritization.

e Convolutional Neural Networks (CNNs) for analysing imaging and structural data.

e Graph Neural Networks (GNNs) to model molecular and protein—protein interaction (PPI)
networks.

e Generative Adversarial Networks (GANs) to design novel molecular structures with optimized
pharmacokinetic and pharmacodynamic (PK/PD) properties.

Each model was trained using 80% of the dataset, while 20% was reserved for validation. K-fold cross-

validation (k = 10) ensured robustness of predictions.

3. Multi-Omics and Network Analysis

3.1 Network Construction

Drug—target and protein—protein interaction (PPI) networks were generated using Cystoscape and
STRING databases. Each node represented a molecular entity (gene, protein, or drug), and edges represented
validated interactions.

Network topology parameters such as degree centrality, betweenness, and clustering coefficients were
analysed to identify key regulatory molecules involved in CNS pathology.

3.2 Pathway and Functional Enrichment
Pathway enrichment analysis was conducted using tools like DAVID, KEGG, and Reactome. Genes
and proteins identified as central nodes were mapped to biological pathways involved in:
e Neuroinflammation and oxidative stress in MS.
e  Angiogenesis, apoptosis, and tumor proliferation in GBM.
Functional annotation enabled the identification of molecular mechanisms that could be targeted by
existing drugs, revealing potential repurposing opportunities.

3.3 Al-Driven Clustering

Al-based clustering algorithms, such as K-means and hierarchical clustering, grouped patients and
compounds based on molecular signatures. These clusters provided insight into personalized therapeutic
approaches, highlighting the role of precision medicine in CNS disease management.
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4. Nanotechnology and Drug Delivery Optimization

4.1 Nanocarrier Design

To overcome the blood—brain barrier (BBB), an Al-assisted nanotechnology model was developed.
Various nanocarrier systems — including liposomes, polymeric nanoparticles, and solid lipid nanoparticles
(SLNs) — were designed and optimized using deep generative models.

4.2 Al-Assisted Optimization

Generative Adversarial Networks (GANs) were employed to simulate molecular modifications that
could enhance permeability, biocompatibility, and target specificity. Molecular docking and dynamics simulations
were conducted using AutoDock Vina and GROMACS to validate drug—receptor interactions within the CNS
environment.
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4.3 Predictive Pharmacokinetic Modelling

Machine learning algorithms predicted pharmacokinetic parameters such as absorption, distribution,
metabolism, and excretion (ADME). This helped refine nanocarrier formulations for sustained and targeted drug
release, ensuring enhanced therapeutic efficacy and reduced systemic toxicity.

5. Validation and Model Evaluation

5.1 Statistical Evaluation
Model performance was validated using standard metrics:
e Accuracy, precision, recall, and Fl1-score for classification models.
e Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) for
predictive models.
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Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for regression-based

5.2 Cross-Validation and External Testing

Models underwent 10-fold cross-validation to prevent overfitting. Independent datasets from unrelated
CNS studies were used for external validation to assess generalizability. Predicted drug candidates were cross-
referenced with published clinical and experimental data to ensure biological plausibility.

5.3 Experimental Correlation

Literature-based validation confirmed several Al-predicted drugs had prior evidence of neuroprotective
or anti-tumor activity. For example, metformin, imatinib, and minocycline emerged as promising repurposable
candidates for MS and GBM, corroborating the Al predictions.
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6. Ethical Considerations and Software Tools

6.1 Ethical Compliance

All datasets were sourced from publicly accessible repositories with appropriate licensing. No patient-
identifiable data were used. Ethical standards consistent with the Declaration of Helsinki were followed during

data handling and analysis.

6.2 Computational Resources

All analyses were performed on high-performance computing (HPC) clusters using:

e Python (TensorFlow, PyTorch, Scikit-learn) for AI/ML modeling.
¢ R (Bioconductor, ggplot2) for statistical and pathway analysis.

e Cytoscape for network visualization.

e AutoDock and GROMACS for molecular simulations.
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7. Graphical Abstract

The graphical abstract (Figure 1) provides a schematic representation of the entire methodology:

1. Data Acquisition — 2. Data Integration — 3. AI/ML Analysis — 4. Nanotechnology
Optimization — 5. Validation — 6. Outcome: Repurposed Drugs and Personalized Therapy.

This visual summarizes the Al-driven workflow leading from data collection to therapeutic prediction.
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RESULTS AND DISCUSSION

The integrated Al-based computational framework successfully analysed multi-omics datasets related
to glioblastoma (GBM) and multiple sclerosis (MS). Among the models tested, graph neural networks (GNNs)
showed the highest predictive accuracy (AUC = 0.93), followed by random forest and support vector machine
models. Network pharmacology revealed key molecular hubs such as EGFR, VEGFA, and IL6, highlighting
overlapping pathways including PI3K—Akt, MAPK, and NF-kB, which play major roles in neuroinflammation
and tumor progression.

Al-driven prediction identified several repurposable drugs such as metformin, imatinib, minocycline,
valproic acid, and riluzole with potential therapeutic relevance in GBM or MS. Literature support confirmed
their known neuroprotective or anti-tumor properties, validating the model’s biological relevance. Al-assisted
nanocarrier design further optimized drug delivery across the blood-brain barrier, achieving predicted
encapsulation efficiencies above 85% and improved permeability, particularly for imatinib and valproic acid
formulations.

Model validation using 10-fold cross-validation produced high precision (0.91) and recall (0.88).
Approximately 70% of predicted interactions were supported by existing experimental data, confirming the
framework’s reliability.

In summary, this study demonstrates that AI-integrated multi-omics and nanotechnology approaches
can accelerate drug repurposing for CNS disorders, reduce research timelines, and support precision medicine
by enabling patient-specific therapeutic strategies. Despite challenges such as data heterogeneity and model
interpretability, Al represents a transformative tool for discovering effective and accessible treatments for
neurodegenerative and oncological diseases of the central nervous system.

CONCLUSION

This study highlights the potential of artificial intelligence (AI) as a powerful tool in modern drug
discovery and precision medicine, particularly for central nervous system (CNS) disorders such as glioblastoma
and multiple sclerosis. By integrating multi-omics datasets with advanced machine learning and nanotechnology
approaches, Al effectively identified promising repurposable drugs and optimized their delivery across the blood—
brain barrier. The findings demonstrate that Al-driven methods can significantly reduce research time, enhance
therapeutic accuracy, and enable personalized treatment strategies. Overall, Al represents a transformative
approach to developing safer, faster, and more efficient therapies for complex neurological diseases.
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