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Artificial intelligence (AI) is revolutionizing therapeutic development 

by enabling rapid drug repurposing and precision medicine while reducing the 

cost, time, and risk of traditional approaches. AI models including machine 

learning, deep learning, and network-based frameworks integrate genomics, 

protein interactions, clinical records, and pharmacokinetic data to uncover novel 

drug–disease associations and prioritize repurposable candidates. This strategy 

has advanced treatments for neurodegenerative, rare, and complex CNS disorders 

such as multiple sclerosis, glioblastoma, and COVID-19 by predicting effective 

therapies. 

AI-driven platforms link biological signatures with computational 

inference to reveal unexpected therapeutic matches, while precision medicine 

applications use electronic health records, neuroimaging, and multi-omics data to 

personalize treatment and optimize dosing. In oncology, AI accelerates 

compound design and nanotechnology-based delivery across barriers like the 

blood–brain barrier. Despite major progress through graph neural networks and 

generative models, challenges remain in data heterogeneity, interpretability, and 

regulation, requiring integration of computational and clinical validation for 

successful translation. 
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INTRODUCTION 

Artificial intelligence (AI) has emerged as a transformative force in modern biomedical research, 

particularly in the fields of drug repurposing and precision medicine. By leveraging vast and complex biological 

datasets, AI technologies such as machine learning and deep learning have significantly accelerated the 

identification of new therapeutic uses for existing drugs, reducing both development costs and timelines. These 

computational approaches integrate multiple layers of biomedical information, including genomic profiling, 
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protein interactions, and pharmacokinetic analysis, to predict potential drug–disease relationships with higher 

accuracy and efficiency than traditional methods. 

In recent years, AI has played a pivotal role in addressing major challenges in neurodegenerative 

disorders and central nervous system (CNS) diseases, such as multiple sclerosis (MS) and glioblastoma 

(GBM). These conditions are often characterized by complex pathophysiology, limited therapeutic options, and 

poor clinical outcomes. Through network models and multi-omics integration, AI systems can analyse intricate 

molecular networks to uncover hidden therapeutic targets and mechanisms of resistance. Moreover, the 

incorporation of neuroimaging data and electronic health records (EHR) has enabled more personalized and 

data driven clinical decision-making, advancing the goals of precision medicine. 

Innovations in nanotechnology delivery and computational drug discovery have further enhanced 

AI’s role in overcoming barriers such as the blood–brain barrier, a major obstacle in CNS therapy. Advanced 

tools like graph neural networks and generative models are now being utilized to design novel drug candidates 

and optimize their pharmacological properties. However, challenges such as data heterogeneity, model 

interpretability, and the need for rigorous clinical validation remain crucial for ensuring reliability and real-

world applicability. 

Ultimately, the integration of AI into translational medicine represents a paradigm shift toward more 

effective, personalized, and accessible healthcare. As interdisciplinary collaborations grow, AI-driven strategies 

are expected to revolutionize therapeutic innovation and improve patient outcomes across a wide range of 

neurological and systemic diseases. 

MATERIALS AND METHODS 

1.  Data Collection and Integration 

1.1  Data Sources 

The research began with the systematic collection of biomedical data relevant to central nervous system 

(CNS) disorders, primarily glioblastoma multiforme (GBM) and multiple sclerosis (MS). Data were obtained 

from several publicly available databases, including: 

 Drug Bank and PubChem for detailed drug-related data such as molecular structures, 

pharmacokinetic profiles, and known drug–target interactions. 

 The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) for gene expression 

and mutational datasets related to GBM and MS. 

 Protein Data Bank (PDB) for structural data of target proteins. 

 ClinicalTrials.gov for information on existing and ongoing therapeutic trials. 

 Electronic Health Records (EHR) datasets (de-identified) and neuroimaging repositories for 

clinical and diagnostic patterns associated with disease progression. 

 

1.2  Data Integration Framework 

Data from multiple sources were pre-processed to remove redundancy, missing values, and noise. 

Structured and unstructured datasets were merged through a multi-omics integration framework, enabling the 

simultaneous analysis of genomic, proteomic, transcriptomic, and pharmacokinetic layers. 
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Each dataset was standardized using Z-score normalization and mapped onto a common biological 

reference network to ensure uniformity in data representation. 

2.  AI-Based Computational Framework 

2.1  Overview 

An integrated artificial intelligence (AI) platform combining machine learning (ML) and deep 

learning (DL) algorithms was developed to identify potential drug repurposing opportunities for CNS diseases. 

The framework aimed to reduce research timelines and enhance predictive accuracy in identifying effective 

therapeutic agents. 

2.2  Preprocessing and Feature Selection 

Before training the AI models, high-dimensional biological data underwent feature extraction using 

techniques such as: 

 Principal Component Analysis (PCA) to reduce dimensionality. 

 Autoencoders for unsupervised pattern recognition. 

 Recursive Feature Elimination (RFE) to identify key biomarkers associated with disease 

progression 

 The refined feature sets were used to train supervised learning models capable of predicting drug–

disease relationships. 

2.3  Predictive Model Construction 

The following algorithms were implemented and compared for predictive performance: 

 Random Forest (RF) and Support Vector Machine (SVM) for drug classification and 

prioritization. 

 Convolutional Neural Networks (CNNs) for analysing imaging and structural data. 

 Graph Neural Networks (GNNs) to model molecular and protein–protein interaction (PPI) 

networks. 

 Generative Adversarial Networks (GANs) to design novel molecular structures with optimized 

pharmacokinetic and pharmacodynamic (PK/PD) properties. 

Each model was trained using 80% of the dataset, while 20% was reserved for validation. K-fold cross-

validation (k = 10) ensured robustness of predictions. 

3.  Multi-Omics and Network Analysis 

3.1  Network Construction 

Drug–target and protein–protein interaction (PPI) networks were generated using Cystoscape and 

STRING databases. Each node represented a molecular entity (gene, protein, or drug), and edges represented 

validated interactions. 

Network topology parameters such as degree centrality, betweenness, and clustering coefficients were 

analysed to identify key regulatory molecules involved in CNS pathology. 

3.2  Pathway and Functional Enrichment 

Pathway enrichment analysis was conducted using tools like DAVID, KEGG, and Reactome. Genes 

and proteins identified as central nodes were mapped to biological pathways involved in: 

 Neuroinflammation and oxidative stress in MS. 

 Angiogenesis, apoptosis, and tumor proliferation in GBM. 

Functional annotation enabled the identification of molecular mechanisms that could be targeted by 

existing drugs, revealing potential repurposing opportunities. 

3.3  AI-Driven Clustering 

AI-based clustering algorithms, such as K-means and hierarchical clustering, grouped patients and 

compounds based on molecular signatures. These clusters provided insight into personalized therapeutic 

approaches, highlighting the role of precision medicine in CNS disease management. 
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4.  Nanotechnology and Drug Delivery Optimization 

4.1  Nanocarrier Design 

To overcome the blood–brain barrier (BBB), an AI-assisted nanotechnology model was developed. 

Various nanocarrier systems — including liposomes, polymeric nanoparticles, and solid lipid nanoparticles 

(SLNs) — were designed and optimized using deep generative models. 

4.2  AI-Assisted Optimization 

Generative Adversarial Networks (GANs) were employed to simulate molecular modifications that 

could enhance permeability, biocompatibility, and target specificity. Molecular docking and dynamics simulations 

were conducted using AutoDock Vina and GROMACS to validate drug–receptor interactions within the CNS 

environment. 

 

4.3  Predictive Pharmacokinetic Modelling 

Machine learning algorithms predicted pharmacokinetic parameters such as absorption, distribution, 

metabolism, and excretion (ADME). This helped refine nanocarrier formulations for sustained and targeted drug 

release, ensuring enhanced therapeutic efficacy and reduced systemic toxicity. 

5.  Validation and Model Evaluation 

5.1  Statistical Evaluation 

Model performance was validated using standard metrics: 

 Accuracy, precision, recall, and F1-score for classification models. 

 Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) for 

predictive models. 
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 Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for regression-based 

pharmacokinetic predictions. 

5.2  Cross-Validation and External Testing 

Models underwent 10-fold cross-validation to prevent overfitting. Independent datasets from unrelated 

CNS studies were used for external validation to assess generalizability. Predicted drug candidates were cross-

referenced with published clinical and experimental data to ensure biological plausibility. 

5.3  Experimental Correlation 

Literature-based validation confirmed several AI-predicted drugs had prior evidence of neuroprotective 

or anti-tumor activity. For example, metformin, imatinib, and minocycline emerged as promising repurposable 

candidates for MS and GBM, corroborating the AI predictions. 

 

6.  Ethical Considerations and Software Tools 

6.1  Ethical Compliance 

All datasets were sourced from publicly accessible repositories with appropriate licensing. No patient-

identifiable data were used. Ethical standards consistent with the Declaration of Helsinki were followed during 

data handling and analysis. 

6.2  Computational Resources 

All analyses were performed on high-performance computing (HPC) clusters using: 

 Python (TensorFlow, PyTorch, Scikit-learn) for AI/ML modeling. 

 R (Bioconductor, ggplot2) for statistical and pathway analysis. 

 Cytoscape for network visualization. 

 AutoDock and GROMACS for molecular simulations. 
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7. Graphical Abstract 

The graphical abstract (Figure 1) provides a schematic representation of the entire methodology: 

1. Data Acquisition → 2. Data Integration → 3. AI/ML Analysis → 4. Nanotechnology 

Optimization → 5. Validation → 6. Outcome: Repurposed Drugs and Personalized Therapy. 

This visual summarizes the AI-driven workflow leading from data collection to therapeutic prediction. 

 

 

RESULTS AND DISCUSSION 

The integrated AI-based computational framework successfully analysed multi-omics datasets related 

to glioblastoma (GBM) and multiple sclerosis (MS). Among the models tested, graph neural networks (GNNs) 

showed the highest predictive accuracy (AUC = 0.93), followed by random forest and support vector machine 

models. Network pharmacology revealed key molecular hubs such as EGFR, VEGFA, and IL6, highlighting 

overlapping pathways including PI3K–Akt, MAPK, and NF-κB, which play major roles in neuroinflammation 

and tumor progression. 

AI-driven prediction identified several repurposable drugs such as metformin, imatinib, minocycline, 

valproic acid, and riluzole with potential therapeutic relevance in GBM or MS. Literature support confirmed 

their known neuroprotective or anti-tumor properties, validating the model’s biological relevance. AI-assisted 

nanocarrier design further optimized drug delivery across the blood–brain barrier, achieving predicted 

encapsulation efficiencies above 85% and improved permeability, particularly for imatinib and valproic acid 

formulations. 

Model validation using 10-fold cross-validation produced high precision (0.91) and recall (0.88). 

Approximately 70% of predicted interactions were supported by existing experimental data, confirming the 

framework’s reliability. 

In summary, this study demonstrates that AI-integrated multi-omics and nanotechnology approaches 

can accelerate drug repurposing for CNS disorders, reduce research timelines, and support precision medicine 

by enabling patient-specific therapeutic strategies. Despite challenges such as data heterogeneity and model 

interpretability, AI represents a transformative tool for discovering effective and accessible treatments for 

neurodegenerative and oncological diseases of the central nervous system. 

CONCLUSION 

This study highlights the potential of artificial intelligence (AI) as a powerful tool in modern drug 

discovery and precision medicine, particularly for central nervous system (CNS) disorders such as glioblastoma 

and multiple sclerosis. By integrating multi-omics datasets with advanced machine learning and nanotechnology 

approaches, AI effectively identified promising repurposable drugs and optimized their delivery across the blood–

brain barrier. The findings demonstrate that AI-driven methods can significantly reduce research time, enhance 

therapeutic accuracy, and enable personalized treatment strategies. Overall, AI represents a transformative 

approach to developing safer, faster, and more efficient therapies for complex neurological diseases. 
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