

International Journal of Pharmacy and Industrial Research (IJPIR)

IJPIR | Vol.14 | Issue 4 | Oct - Dec -2024 www.ijpir.com

DOI:https://doi.org/10.61096/ijpir.v14.iss4.2024.439-445

ISSN: 2231-3656 Print: 2231-3648

Research

Formulation and evaluation of eplerenone immediate release 25mg tablets

Chanamgari Bhavani, A.V.S Rajeshwari, Mohammad Omar

Arya college of Pharmacy, Kandi, Sangareddy, Affiliated to Osmania University, Hyderabad, Sangareddy, Telangana 502285, India

*Author for Correspondence: Chanamgari Bhavani

Email: chenamgaribhavani@gmail.com

Check for updates	Abstract
Published on: 21 Nov2024	The present study aimed to improve the Solubility and Dissolution ratio of Eplerenone by preparation of Eplerenone nanosuspension by via nano-precipitation method. There is poor solubilities and slow dissolutions comparison are principal
Published by: DrSriram Publications	concerns for the edge of approaching drugs and presented biologically active combinations. Eplerenone is highly selective aldosterone blocker. It is treated for therapy of hypertension and heart failure, but question related with its poor solubility in biological solutions. Eplerenone is BCS Class-II having high permeability low and solubility. All the Eplerenone nanosuspension preparations
2024 All rights reserved. Creative Commons Attribution 4.0 International License.	were characterization for its Particle size and its distribution, Scanning Electron Microscopy, Zeta potential analysis, Drug excipient interactions investigated by using FT-IR examinations, Entrapment Efficiency (EE) and in vitro release kinetics. The adjusted formulation (Trail 6) showed an average particle size and zeta potential is 169.5.05 nm and -58 mV respectively. The dissolution profiling rate for the optimized nanosuspension was better relative to Eplerenone mainly due to the design of nanosized particles. Stability search discovered that nanosuspension was more stable at ambient room and cold condition with no significant change in particle size distribution. These effects indicate that the Eplerenone loaded Nanosuspension significantly increased in-vitro dissolution rate and thus probably enhance immediate start of therapeutic medication effect. Keywords: Formulation, Evaluation, Eplerenone immediate release tablets, Solubility, Dissolution

INTRODUCTION

Eplerenone is classified as an aldosterone antagonist and has been available in the United States since 2002. Eplerenone key advantage over its older and less expensive drug in its class, spironolactone is its increased selectivity for the mineral corticoid receptor relative to glucocorticoid, progesterone, and androgen receptors. Eplerenone is approved by the Food and Drug Administration (FDA) for: The improvement of survival

of stable patients with left ventricular (LV) Systolic dysfunction (left ventricular ejection fraction less than or equal to 40")and congestive heart failure (CHF) after an acute myocardial infarction (MI).

Hypertension, alone or combined with other agents. Though the FDA specifies Eplerenone's use in heart failure specifically to those status- post myocardial infarction (EF) less than or equal to 35 percentage, especially when they have experienced an adverse effect to spironolactone. The use of Eplerenone in these populations has support from the EPHESUS and EMPHASIS – HF randomized controlled trials, respectively. Concerning its use in hypertension, Eplerenone is not a recommended agent for the initial treatment of hypertension. However, Eplerenone and spironolactone are preferred agents for patients with hypertension due to primary aldosteronism or resistant hypertension. Eplerenone has not been subject to prospective comparisons to spironolactone or other agents in head- to – head trials of resistant hypertension but may be used as an alternative to spironolactone, especially when a patient has experienced antiandrogen adverse effects from spironolactone. As an aldosterone antagonist, it is also used off- label to treat primary aldosteronism and ischemic heart disease. Eplerenone is used alone or in combination with other medications to treat high blood pressure. Eplerenone is in a class of medications called mineralocorticoid receptor antagonist. It works by blocking the action of aldosterone, natural substances in the body that raises blood pressures.

Eplerenone tablets contain Eplerenone, a blocker of aldosterone binding at the mineralocorticoid receptor. Eplerenone is chemically described as pregn-4-ene-7, 21-dicarboxylic acid, 9, 11-epoxy-17-hydroxy-3-oxo-, alpha-lactone, methyl ester, (7 alpha, 11alpha, 17 alpha)- its empirical formula is C24H30O6 and it has a Molecular weight of 414.50.

Immediate release formulation

Oral delivery of the pharmaceutical compositions of the present invention can include immediate release compositions as well as controlled release compositions. Preferably, the pharmaceutical compositions are in the form of immediate release tablets or capsules. The immediate release compositions comprise micronized Eplerenone in amount sufficient to provide the desired daily dosage of Eplerenone, that is, an amount of about 10mg to about 1000 mg, more preferably an amount of about 20mg to 400mg, still more preferably an amount of about 25mg to 200 mg, still more preferably an amount of about 25mg to 150mg, and still more preferably an amount of about 50mg to 100mg. A once-a-day immediate release tablets or capsules contains Eplerenone in an amount, for example, of about 50mg to about 100mg. Preferably, the same batch can be used to prepare tables (or capsules) of different strengths by compressing the formulation in different tablet sizes (or encapsulating the formulation in different capsule sizes or using different capsule fill weights). Although the amount of eplerenone in such novel compositions preferably discussed, the formulations also can be useful for the administration of an amount of eplerenone falling outside of the disclosed dosage ranges.

MATERIALS AND METHODS

Eplerenone, IH, Lactose monohydrate, USP, Micro crystalline cellulose, USP, Sodium Lauryl Sulphate, USP), Croscarmellose sodium, Hypromellose USP, Purified water, Talc USP, Magnesium stearate USP, Opadry Yellow, Vibratory Sifter, Rapid Mixture granulator 1000l, Fluid Bed Dryer, Multimill, Octagonal blender, Tablet compression Machine, Tablet deduster, Metal detector, Coating Machine, Analytical balance, Moisture analyzer, Bulk density apparatus, Vernier caliper.

Sr.No	Requirement	Raw material	Roles	Manufactures	Quantity per Unit in mg	Quantity per batch
1.	Eplerenone, IH	Active	Intra granular materials	DuPont Nutrition	25.000	15.000
2.	Lactose monohydrate, USP	Excipient	Intra granular materials	BASF Personal care and Nutrition Gmbh	36.465	21.879
3.	Micro crystalline cellulose, USP	Excipient	Intra granular materials	DuPont Nutrition	8.500	5.100
4.	Sodium Lauryl Sulphate, USP-)	Solvent	Intra granular materials	Dow Chemical International Pvt. Ltd	0.085	0.051
5.	Croscarmellose sodium,	Excipient	Intra granular materials	BASF Personal care and DuPont Nutrition NutritionGmbh	4.250	2.550
6.	Hypromellose USP	Excipient	Granulation:	DuPont Nutrition	0.850	0.510

Sr.No	Requirement	Raw material	Roles Manufactures		Quantity per Unit in mg	Quantity per batch
7.	Purified water	Solvent	Granulation:	Inhouse/USP/EP	0.850	0.510
8.	Croscarmellose sodium, USP)	Excipient	Pre- Lubrication	BASF Personal care and Nutrition Gmbh	0.850	0.510
9.	Micro crystalline cellulose	Excipient	Pre- Lubrication	DuPont Nutrition	0.850	0.510
10	Talc USP	Excipient	Pre- Lubrication	Imerys Talc Italy S.p.A	0.850	0.510
11	. Magnesium stearate, USP	Excipient	Lubrication:	Peter Greven	14.450	14.450
12	. Opadry Yellow	Excipient	Coating	Colorcon	2.550	1.989
13	. Purified water,	Excipient	Coating	Inhouse/USP/EP	14.450	11.271

Drug profile: eplerenone

Generic Name: Eplerenone

Drug Class: Mineralocorticoid Receptor Antagonist (Selective Aldosterone Blocker)

Dosage Form: TabletStrength: 25 mgMechanism of Action:

• Eplerenone is a selective aldosterone receptor antagonist. Aldosterone is a hormone that increases sodium reabsorption and potassium excretion in the kidneys. By blocking aldosterone receptors, eplerenone reduces sodium reabsorption and promotes the excretion of sodium and water, which helps to lower blood pressure and reduce fluid retention. This mechanism also spares potassium, reducing the risk of hypokalemia (low potassium levels).

Indications

• Heart Failure Post-Myocardial Infarction: Eplerenone is used to improve survival in patients who have heart failure with reduced ejection fraction (HFrEF) following a myocardial infarction.

• Hypertension: Eplerenone is indicated for the treatment of hypertension to lower blood pressure. Lowering blood pressure helps to reduce the risk of strokes, heart attacks, and kidney problems.

Representation of the in process test during the formulation and manufacturing of the product

Sr.No	Test	Methods
Granulat	ion :	
1.	Loss of Drying	Performed in moisture analyzer balance
2.	Bulk density	Measurement of Bulk density was done by pouring powder into a measuring cylinder through sieve # 20 and the initial weight was noted. The initial volume was termed as bulk volume.11
3.	Tapped density	Tapped density is defined as the ratio between aggregate weights of granules to the tapped volume of powder. Measurement of the volume was done by tapping the granules 750 times. If the variance in volume exceeds 2%, further tapping should be done for 1250 times. It was conveyed in g/ml
4.	Angle of Repose	Angle of repose was done by using powder flow tester. Angle of repose can be calculated by measuring the height and radius of the pile of granules
5.	Compressibility index	It demonstrates the flow properties of the granules. It is conveyed in the form of % and can be calculated using bulk density and tapped density.

Sr.No	Test	Methods
6.	Hausner Ratio	Hausner ratio is an indirect way of accessing the ease of granules flow. It can be calculated by using bulk density and tapped density
Compres	sion	
7.	Weight Variation	Randomly 20 tablets were selected and weighed using a single balance. Standard deviations were calculated and checked with the standard pharmacopeial limits.
8.	Thickness	Tablets were selected randomly from all batches and measurement of thickness was done by using Vernier Calliper.1
9.	Hardness	The strength of tablet is expressed in the form of tensile strength (Kg/cm2). The amount of force required to break the tablets was measured by using a hardness tester
10.	Friability	Randomly 20 tablets were selected and weighed from all the batches. The weighed tablets then placed in friabilator and then ran for 100 revolutions. After completion of 100 revolutions tablets were de-dusted, re-weighed and %friability was calculated.

Based on the results of studies it concluded that the selected excipient are compatible with active pharmaceutical ingredient Eplerenone . With 60°C open and closed condition API and propylene glycol related substances are failing with respect to limit, but it is compiled with active pharmaceutical ingredient and placebo combination study. Hence it confirms the compatibility.

Manufacturing Process

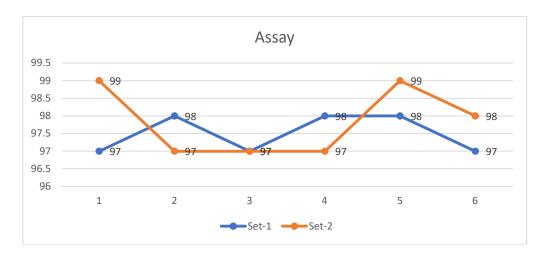
Unit Parameter	Process Parameter	Quality Attributes		
Dry Mixing	Order of addition	Particle size distribution , Bulk/tapped		
	RMG amperage	density, flow properties		
	Impeller Speed and time			
	Mixing			
Wet Granulations	Binder addition time	Granules size, Granule shape, flow		
	Impeller Speed	properties		
	Chopper Speed and Run time			
	Binder fluid temperature			
	Post granulation fix time			
Milling	Speed of mill	Blend Uniformity flow, Particle size and		
	Screen size	distribution, Granules size and		
	Feeding rate	distribution, granules strength and		
		uniformity solid form		
Drying	Inlet temperature, inlet air flow, volume	Granule size and distribution, granules		
	Bowl temperature	strength and uniformity,		
	Exhaust temperature			

Manufacturing Process Experimental Designed for the formulation

Table 1: Different quantity of ingredient were change for the formulation to optimized the formula									
Ingredient Quantity in batc						oatch per kg (mg/Tablets)			
-	Trail	Trail	Trail	Trail	Trail	Trail 6	Quantity/		
	1	2	3	4	5	%w/w	Unit(mg)		
Intra Granular Material:									
Eplerenone, IH	25	25	25	25	25	29.41	25.000		
Lactose monohydrate, USP	34	34	36.7	36.253	36.465	42.90	36.465		
Micro crystalline cellulose,						10.00	8.500		
USP	8	7	8.445	8.7	8.5				
Sodium Lauryl Sulphate, USP-	0.085	0.085	0.075	0.085	0.085	0.10	0.085		
Croscarmellose sodium,	7.215	8.215	4.08	4.25	4.25	5.00	4.250		
						87.41	74.3		
Granulation:									
Hypromellose USP	2.550	2.550	2.550	2.550	2.550	3.00	2.550		

Table 1: Different quanti	Table 1: Different quantity of ingredient were change for the formulation to optimized the formula								
Ingredient			Quantity in	ı batch pe	er kg (mg	g/Tablets)			
	Trail	Trail	Trail	Trail	Trail	Trail 6	Quantity/		
	1	2	3	4	5	%w/w	Unit(mg)		
Purified water	22.290	22.290	22.290	22.290	22.290		22.290		
Croscarmellose sodium,	14.860	14.860	14.860	14.860	14.860		14.860		
USP)									
Extra Granular Material	S								
Croscarmellose sodium, USP	1.700	1.700	1.700	1.700	1.700	2.00	1.700		
Micro crystalline cellulose, USP	5.175	5.175	5.175	5.175	5.175	6.09	5.175		
Talc USP	0.850	0.850	0.850	0.850	0.850	1.00	0.850		
Lubrication:									
Magnesium stearate,	0.425	0.425	0.425	0.425	0.425	0.50	0.425		
Core Tablet weight						100.00	85.000		
Coating									
Opadry Yellow	1.989	1.989	1.989	1.989	1.989	2.550	1.989		
Purified water, IHS/USP/Ph.Eur [@]	11.271	11.271	11.271	11.271	11.271	14.450	11.271		
Total	87.550	87.550	87.550	87.550	87.550	87.550	87.550		
Flow Properties	Very Poor	Poor	Passable	Fair	Good	Excellent	Excellent		

From the above table all in process control and parameter is observed well within criteria for Trail batches Trail 6.


The samples were collected for the testing of Physical parameters, Uniformity of Dosage unit's test and Dissolution test (At optimum speed), the obtained results are summarized in below tables.

Compression Inprocess checks

PARAMETER	SPECIFICATION
Description	White to off white, round, biconvex tablets de-bossed with
Description	"V" on one side and "68" on the other side.
Weight of 10 tablets (g) ^	$0.850 \text{ g} \pm 4.0 \% (0.816 \text{ g} - 0.884 \text{ g})$
Weight of individual tablets (mg)	$85 \text{ mg} \pm 5.0 \% (80.75 \text{ mg} - 89.25 \text{ mg})$
Friability (%w/w)	NMT 1.0 %w/w
Thickness (mm) ^	$3.0 \text{ mm} \pm 0.3 (2.7 \text{ mm} - 3.3 \text{ mm})$
Hardness (Kp) ^	8.0 Kp (4.0 Kp – 12 .0 Kp)
Disintegration time (min)	NMT 15 minutes
Compression machine Speed (RPM)	PM) 10 – 70 RPM

Summary of analytical results (Assay of Tablets)

Assay	Trail 6	Trail 6
1	97	99
2	98	97
3	97	97
4	98	97
5	98	99
6	97	98
Minimum	97	97
Maximum	98	99
Average	97	98
HPLC	QC-HPLC001	QC-HPLC001
Column	QC-COL-003	QC-COL-002

Uniformity of dosage units of Tablets

T4	Acceptance		Trai	16	
Test	criteria	Sample ID	Set-1	Set-2	Set-3
		Tablet -1	97.06	98.00	99.75
		Tablet -2	99.37	97.83	98.99
		Tablet -3	97.91	96.75	98.64
Uniformity		Tablet -4	98.57	98.80	98.12
of dosage	Not more than 15.0.	Tablet -5	97.79	96.85	97.40
ınits (By		Tablet -6	97.71	99.41	97.80
veight		Tablet -7	97.05	97.57	96.88
/ariation) USP<905 &		Tablet -8	98.36	97.32	96.62
		Tablet -9	97.85	98.79	97.85
In-House) Acceptance Value (L1)		Tablet -10	97.33	97.69	96.96
		Acceptance Value	2.3	2.7	3.0
		Mean	97.9	97.9	97.9
		SD	0.72	0.87	1.00

S. No.	Acceptance	Trail 6				
	Criteria	10 Minutes	15 Minutes	20 Minutes	30 Minutes	45 Minutes
1		94	95	97	97	97
2	_	93	94	95	96	96
3	-	91	96	97	98	97
4	_	94	98	97	98	98
5	_	90	95	96	96	96
6	_	86	97	97	98	98
7	-	86	93	94	95	95
8	For	86	96	96	96	97
9	Information (%)	85	94	94	95	95
10	-	92	95	97	96	97
11	_	82	92	95	95	96
12	- - -	91	95	96	96	96
Minimum		82	92	94	95	95
Maximum		94	98	97	98	98
Average	=	89	95	96	96	97
% RSD	_	4.5	1.7	1.2	1.2	1.0

Sample was collected for the testing of dissolution profile as per the sampling plan of process validation protocol and the results were found satisfactory.

SUMMARY AND CONCLUSION

Qualified Facilities, Utilities and Equipments used for manufacturing process. Analytical methods used for testing are validated. Operational/process parameters at various stages are evaluated against the predetermined specifications and criteria as per batch records Based on summary, the limits proposed/recommended (refer section 'Recommendations'). At Compression stage, during compression, at optimum speed samples were collected as per sampling plan of protocol and evaluated for Tablet physical parameters, Dissolution and Uniformity of dosage unit (UOD). All the results were found well within the predetermined specifications and quality attributes.

The current research work predicts the applicability of QbD in manufacturing Eplerenone The solid dispersions methodology is the most practical and least expensive method to increase the solubility and dissolution rate of poorly water-soluble eplerenone. Formulating lipid-based solid dispersions employing a mix of hydrophilic lipid carriers has shown to be quite common. From the outcomes it was clearly apparent that as the polymer concentration increases, there was a decline in the release of drug. Grouping of polymers with other excipients do not interact with drug and vice versa, which informations to sustained delivery of drug for longer periods. Eplerenone is better absorbed and transported with the help of formulation Trail 6. To investigate permeability further, ex vivo tests were undertaken with impressive results compared to what was available on the market.

REFERENCES

- 1. Giacchetti G, Letizia C, Maccario M, Mallamaci F, Mannelli M, Mattarello MJ, Moretti A, Palumbo G, Parenti G, Porteri E, Semplicini A, Rizzoni D, Rossi E, Boscaro M, Pessina AC, ManteroF . PAPY Study Investigators. A prospective study of the prevalence of primary aldosteronsim in 1125 hypertensive patients. J Am Coll Cardiol 2006; 48: 2293–2300.
- 2. Ito Y, Takeda R, Karashima S, Yamamoto Y, Yoneda T, Takeda Y. Prevalence of primaryaldosteronism among prehypertensive and stage 1 hypertensive subjects. Hypertens Res 2011; 34: 98–102.
- 3. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005; 45: 1243–1245.
- 4. Takeda R, Matsubara T, Miyamori I, Hatakeyama H, Morise T. Vascular complications in patients with aldosterone producing adenoma in Japan: comparative study with essential hypertension. J Endocrinol Invest 1995; 18: 370–373.
- 5. Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, AgabitiRosei E. Resistant hypertension and target organ damage. Hypertens Res 2013; 36: 485–491.
- Nishikawa T, Omura M, Satoh F, Shibata H, Takahashi K, Tamura N, Tanabe A. Task Force Committee on Primary Aldosteronism, The Japan Endocrine Society. Guidelines for the diagnosis and treatment of primary aldosteronism—the Japan Endocrine Society 2009. Endocr J 2011; 58: 711–72
- 7. Yoshizumi T, Nakamura T, Yamane M, Islam AHMW, Menju M, Yamasaki K . Abdominal fat: standardized technique for measurement at CT. Radiology 1999; 211: 283–286.
- 8. Iwakura Y, Morimoto R, Kudo M, Ono Y, Takase K, Seiji K, Arai Y, Nakamura Y, Sasano H, Ito S, Satoh F. Predictors of decreasing glomerular filtration rate and prevalence of chronic kidney disease after treatment of primary aldosteronism: renal outcome of 213 cases. J Clin Endocrinol Metab 2014; 99: 1593–1598.
- 9. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T . Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 2006; 47: 1084–1093
- Iwakura Y, Morimoto R, Kudo M, Ono Y, Takase K, Seiji K, Arai Y, Nakamura Y, Sasano H, Ito S, Satoh F. Predictors of decreasing glomerular filtration rate and prevalence of chronic kidney disease after treatment of primary aldosteronism: renal outcome of 213 cases. J Clin Endocrinol Metab 2014; 99: 1593–1598.
- 11. Ando K, Ohtsu H, Uchida S, Kaname S, Arakawa Y, Fujita T. for the EVALUATE Study Group. Antialbuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomized, placebo-controlled trial. Lancet Diabetes Endocrinol 2014; 2: 944–95
- 12. Francis J, Weiss RM, Wei SG, Johnson AK, Beltz TG, Zimmerman K, Felder RB. Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. Am J Physiol Heart Circ Physiol 2001; 281: H2241–H2251