

Available Online at: www.ijpir.com

International Journal of Pharmacy and Industrial Research

Synthesis, characterization and biological evaluation of benzimidazole carboxylate derivatives

Rashmi T^{1*}, Swaroopa HM¹, Anupama sunny², Aysha Hanna KP²,Finu Faris K²

^{1*}Assistant Professor, Bharathi College of Pharmacy, Bharathi Nagar

¹Assistant Professor, Bharathi College of Pharmacy, Bharathi Nagar

²B.Pharma Final Year Student, Bharathi College of Pharmacy, Bharathi Nagar

ABSTRACT

The present investigation deals with preparation of total of four compounds of benzimidazole carboxylate derivatives, characterized by IR, ¹H NMR, ¹³C NMR and Mass spectroscopy and assayed biological test for analgesic activity. The analgesic activity of the synthesized compounds was evaluated by tail-flick model as per standard experimental procedure. The test compounds were administered by making suspension using Tween-40 and normal saline at a dose of 50mg/kg b.w. through i.p. route. The standard drug, Diclofenac sodium at a dose of 10mg/kg b.w&Aspirin at a dose of 50mg/kg b.w. was used on a parallel manner for comparison. The compound **6a** that possess maximum potency. The compounds **6c, 6d&6b** which showed 2nd,3rd & 4th most potent analgesic activity respectively.

Keyword: Analgesic activity, 2-(2-methyl-3-nitrobenzyl)-1H-benzimidazole,

INTRODUCTION

Inflammation is a complex defensive mechanism of the body to any noxious stimulus; this process may vary from a localized to a generalized response characterized by the accumulation of fluids and leukocytes leading to edema and pain¹. This inflammatory response seems to be mediated by different physiological and immunological mediators that play a role in acute and chronic inflammation². Acute inflammation occurs as the initial response to tissue injury, being mediated by the release of autacoids, for example, serotonin, thromboxane, histamine and leukotrienes³. On the other hand, the chronic inflammatory process involves the release of diverse mediators, as interleukins, interferon and tumour necrosis factor a (TNF-a), and a cytokine that plays a major role in this kind of inflammatory process^{4,5}. Benzimidazoles and its derivatives fulfil the minimum structural requirements for analgesic^{7,8}. Encouraged by the aforementioned findings and in continuation of an ongoing program aiming at finding new gastroprotective leads with

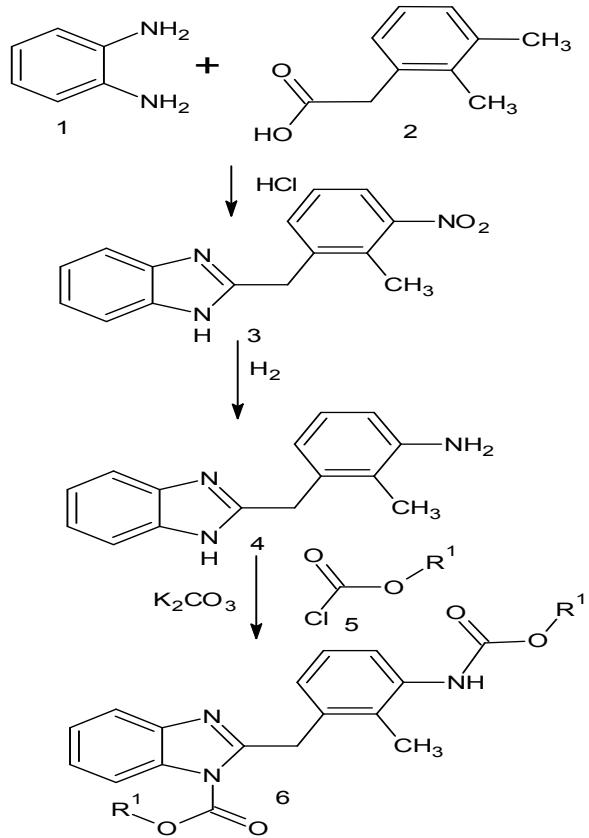
potential anti-inflammatory, analgesic activities, it was rationalized to explore novel benzimidazole derivatives. In the present research work, benzimidazole derivatives have been synthesized and bio-evaluated for their analgesic. Moreover, the drug-likeness properties of the resulted compounds are also presented. benzimidazole heterocyclic compounds with substituted carboxylate derivatives was being proposed. benzimidazole carboxylate derivatives were synthesized and tested for analgesic activity.

RESULTS AND DISCUSSION

Chemistry

All chemicals and reagents were used are of analytical grade. Melting points were determined on an electro thermal apparatus using open capillaries and are uncorrected. Thin-layer chromatography was accomplished on 0.2-mm precoated plates of silica gel G60 F254 (Merck). Visualization was made with UV light (254 and 365nm) or

Author for Correspondence:


Rashmi T

Assistant Professor, Bharathi College of Pharmacy, Bharathi Nagar

with an iodine vapor. IR spectra were recorded on a Shimadzu-Fourier transform infra-red (FTIR)-8400 Spectrophotometer using KBr disc. ^1H NMR spectra were recorded on a Bruker DPX-400 MHz spectrometer.

Chemical shifts are expressed in δ ppm downfield from TMS as an internal standard. The mass spectral data were obtained with a SHIMADZU-LCMS

Working scheme

Biological evaluation

Analgesic activity

The analgesic activity of the synthesized compounds (6a-6d) was evaluated by tail-flick model as per standard experimental procedure⁶⁷ using male albino rats weighing between 125-150g as the experimental animals. The test compounds were administered by making suspension using Tween-40 and normal saline at a dose of 50mg/kg b.w.

through i.p. route. The standard drug, Diclofenac sodium at a dose of 10mg/kg b.w. was used on a parallel manner for comparison. The basal reaction time will observe at 1, 2 & 3 hrs after administration of the synthesized compound by placing the tail tip of the rats 1-2cm on the radiant heat of analgesiometer, heated at $55^\circ\text{C} \pm 0.5^\circ\text{C}$. The percentage analgesic activity is calculated by observing the following formula:

$$\% \text{ of Analgesic activity} = \frac{\text{Reaction time of test}}{\text{Reaction time of solvent}} \times 100$$

Biological results

The study of analgesic activity by tail flick method showed that the percentage analgesic activity ranges between 159 and 359 at the end of 3 hrs, where as the standard drug Diclofenac sodium registered 368 (Table -2). It has been observed that the maximum analgesic activity was recorded by the compound 6a having 359 % analgesic activity followed by compound 6c (268 %), 6d(204 %)&6b (159%) analgesic potential. It has been found that the reaction time

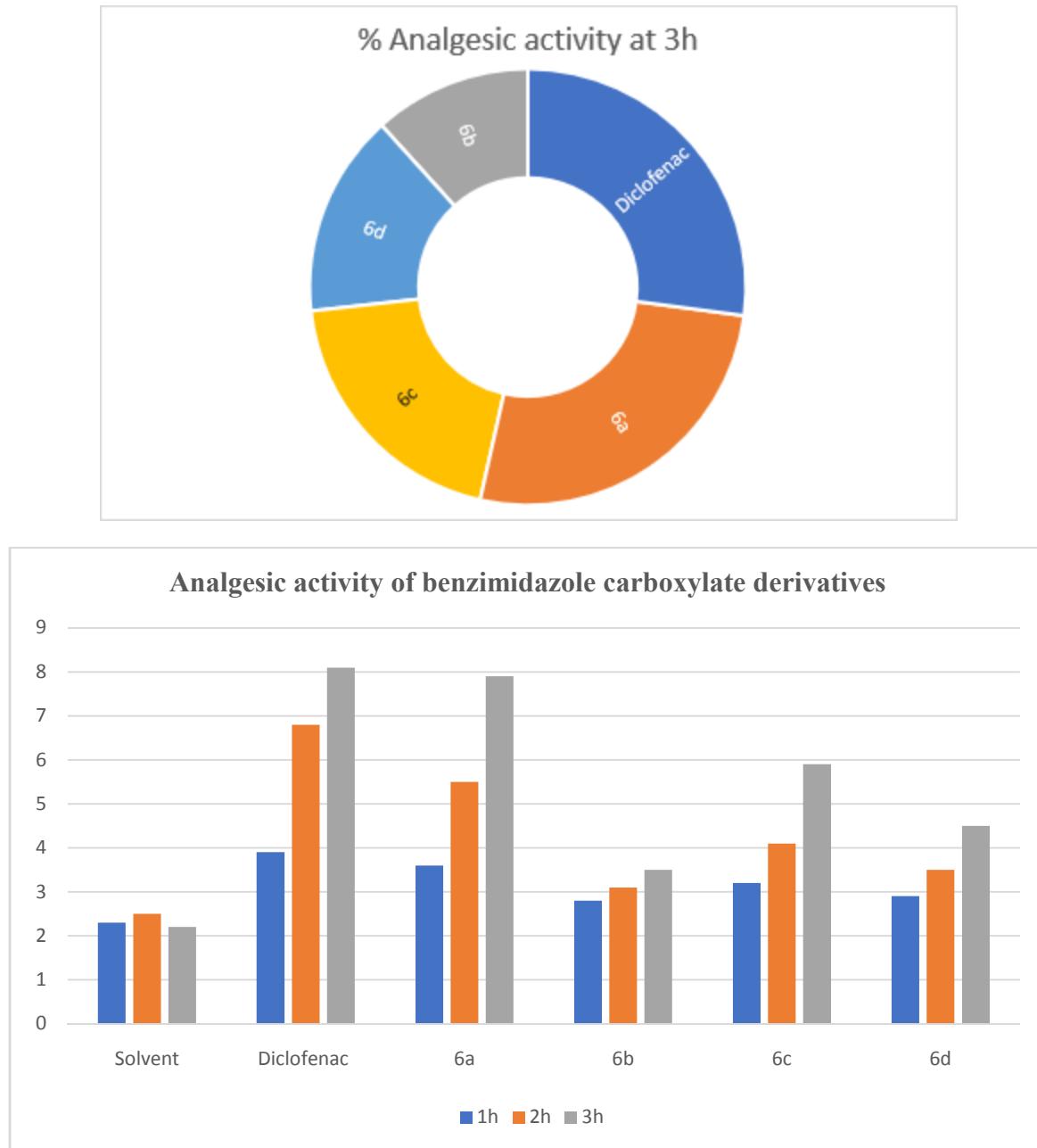

increases significantly from $p<0.05$ to $p<0.001$ when compared with solvent control. The compounds 6a showed nearly similar percentage analgesic activity compared to standard drug Diclofenac sodium, whereas 6c, 6d & 6b registered percentage analgesic activity relatively less than standard drug. The compound 6a that possess maximum potency. The compounds 6c,6d&6b which showed 2nd, 3rd & 4th most potent analgesic activity.¹³⁻¹⁵

Table 1: Analgesic activity of benzimidazole carboxylate derivatives (6a, 6b, 6c and 6d) in Rats by Tail-flick method

Sl. No.	Compound. No.	Reaction time (sec)			% Analgesic activity at 3h
		1h	2h	3h	
1.	Solvent	2.3 \pm 0.11	2.5 \pm 0.08	2.2 \pm 0.06	-
2.	Diclofenac (10mg/kg)	3.9 \pm 0.17***	6.8 \pm 0.12***	8.1 \pm 0.08***	368.18

3.	7a1	3.6±0.04***	5.5±0.06***	7.9±0.15***	359.09
4.	7a ₂	2.8±0.08**	3.1±0.13***	3.5±0.11***	159.09
5.	7b1	3.2±0.11***	4.1±0.14***	5.9±0.09***	268.18
6.	7b2	2.9±0.13**	3.5±0.23**	4.5±0.08***	204.54

Values expressed as Mean ± SEM, n=6, *p<0.05, **p<0.01, ***p<0.001, Dose of the test compound: 50 mg/kg. (ANOVA followed by Dunnett's t-test).

Figure 1 Analgesic activity of benzimidazole carboxylate derivatives

Experimental

General method of preparation

Preparation of 2-(2-methyl-3-nitrobenzyl)-1H-benzimidazole

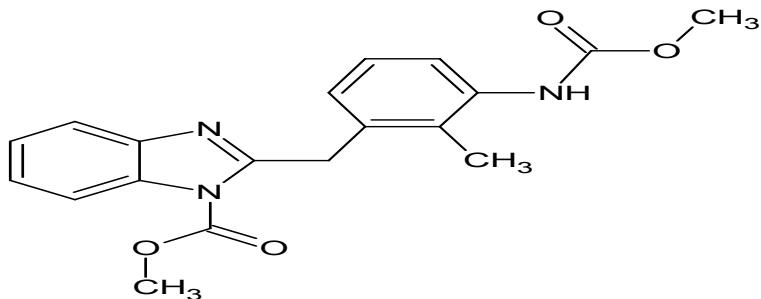
4N HCl solution (50 cm³) was added to a round-bottom flask equipped with a magnetic stirring bar and reflux condenser. o-Phenylenediamine (1, 4.0 g, 0.036 mol) and 2-methyl-3-nitrophenylacetic acid (2, 6.6 g, 0.036 mol) were added and the solution was stirred for 30

minutes. The reaction mass was refluxed at 85°C for 3 hours. The product was precipitated by adding ammonia solution. The resulting precipitated solid was filtered and washed with water. The compound was re-crystallized from water and ethanol.^{10,12}

Preparation of 3-(1H-benzimidazole-2yl-methyl)-2-methyl aniline

2-(2-Methyl-3-nitrobenzyl)-1H-benzimidazole (3, 10 g, 0.03 mol) and methanol (100 cm³) were added to 80 cm³ closed

vessel flask equipped with a magnetic stirring bar. Ammonium formate (10 g, 0.16 mol) and 5% palladiumoncarbon 50% wet (1g,0.1volume) were added to the reaction mass and the flask was closed. The reaction mass was reflux at temperature 90C-100°Cfor 2 hour After completion of there action, the catalyst was filtered off by using celite bed and the solvent was removed under vacuum below 60°C. The product obtained was dried in a desiccator to afford 3-(1H-benzimidazole-2-ylmethyl)-2-methylaniline(4).

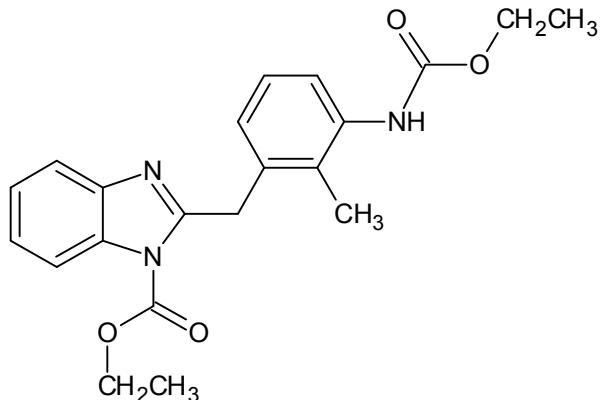

Preparation of substituted benzimidazole carboxylate

Acetone (15cm³) was added to around-bottom glass flask equipped with a magnetic stirring bar. Potassium carbonate (8.28g,0.06mol) was added to the reaction mass followed by 3-(1H-benzimidazole-2-yl methyl)-2-methylaniline (4, 11.3 g, 0.048 mol). Substituted chloroformate (7, 0.048 mol) was then added maintaining the temperature at 0 - 5°C. The precipitated solid was removed by vacuum filtration. The filtrate was collected and the acetone was removed under vacuum leaving the crude product. The compounds (6) were recrystallized from water and ethanol¹⁶⁻¹⁸.

Table:2 Characterization of synthesized compounds

Compound	R ¹	Molecular formula	M.P	% Yield	Elemental Analysis					
					Calculated			Found		
					%C	%H	%N	%C	%H	%N
6a	CH ₃	C ₁₉ H ₁₉ N ₃ O ₄	107	78	64.58	5.42	11.89	64.66	5.51	11.95
6b	CH ₂ CH ₃	C ₂₁ H ₂₅ N ₃ O ₄	115	75	66.13	6.08	11.02	66.33	6.4	11.33
6c	CH ₂ C(CH ₃) ₂	C ₂₅ H ₃₁ N ₃ O ₄	90	70	68.63	7.14	9.60	68.70	7.32	9.89
6d	CH ₂ C ₆ H ₅	C ₃₁ H ₂₇ N ₃ O ₄	140	72	73.65	5.32	12.66	73.75	5.48	12.79

4.1 Compound 6a (Methyl-2- {3-[(methoxy carbonyl) amino]-2methylbenzy1}-1H benzimidazole-1-carboxylate) Molecular structure

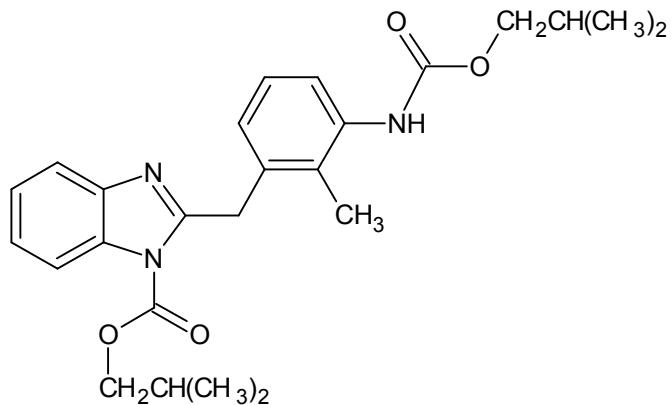


Spectral Analysis of synthesized compounds

The IR spectrum of the compound **6a** obtained in KBr phase and expressed in cm⁻¹ showed peaks at 3443.3 (C-H aromatic), 3193.5-2959(-NH str.), 1763.6 and 1726.0(-O.CO.N str.), 1455.0, 1443.5, 1357.6, 1239.0, 1214.0, 1126.2, 1098.3, 1038.5, 778.1, 762.7, 749.2 (C-C aromatic). The ¹H NMR spectrum of the compound **6a** in DMSO-d6 is interpreted in 6 ppm and showed peaks at 2.10 (s, 3H, -CH₃), 3.64 (s, 3H, CO.00H3), 4.01 (s, 3H, -CO.00H3), 4.50 (s, 2H, -CH₂), 6.83-7.22 (m, 4H, Ar-H), 7.30-7.63 (m, 3H, Ar-H), 8.92 (s, 1H, -NH).

The ¹³C NMR spectrum of the compound **6a** in 6 ppm and obtained in DMSO-d6 phase showed the following peaks :13.84(CH₃),34.80(CH₃),51.61(OCH₃),54.55(OCH₃),114.84(ArC),119.30(ArC),124.15(ArC),124.38(ArC),125.39(ArC),126.09(ArC),131.39(ArC),132.64(ArC),136.32(ArC),136.45(ArC),141.82 (ArC), 150.46 (ArC), 154.23 (C=O), 155.09 (C=O). The mass spectrum of the compound **6a** in ESI mode showed the peak molecular ion m/z [M+1-1] at 353.9.

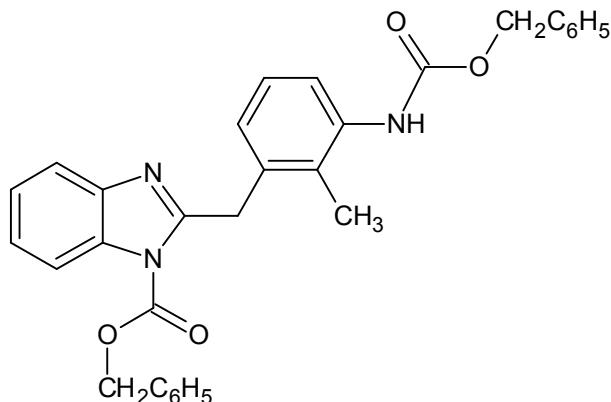
**Compound 6b (ethyl 2- {3-[(ethoxycarbonylpamino]-2-methylbenzyl} -1H-benzimidazol e-l-carboxylate.)
Molecular structure**



Spectral Analysis of synthesized compounds

The IR spectrum of the compound **6b** obtained in KBr phase and expressed in cm^{-1} showed peaks at 3429.8 (C-H aromatic), 3211.9-2978.5 (C=N str.), 1744.3 and 1724.0 (-O.CO.N str.), 1474.3, 1456.0, 1376.0, 1358.6, 1334.5, 1283.4, 1235.2, 1176.4, 1132.0, 1097.3, 1047.2, 1010.5, 762.7, 749.2 (C-C aromatic). The ^1H NMR spectrum of the compound **6b** in 6 ppm and obtained in DMSO-d6 phase showed the following peaks: 1.21-1.24 (t, 3H, -CH₃), 1.32-1.36 (t, 3H, -CH₃), 2.11 (s, 3H, -CH₃), 4.06-4.12 (q, 2H, -CH₂), 4.42-4.8 (q, 2H, -CH₂), 4.50 (s, 2H, -CH₂), 6.78-7.96 (m, 7H, Ar-H), 8.88 (s, 1H, -NH). The ^{13}C NMR spectrum of the compound **6b** in 6 ppm and obtained in DMSO-d6 phase showed the following peaks: 13.74 (CH₃), 13.84 (CH₃), 14.60 (CH₃), 34.93 (CH₃), 60.07 (OCH₃), 64.05 (OCH₃), 114.83 (ArC), 119.31 (ArC), 124.04 (ArC), 124.12 (ArC), 124.41 (ArC), 125.34 (ArC), 125.78 (ArC), 131.29 (ArC), 132.72 (ArC), 136.41 (ArC), 136.51 (ArC), 141.85 (ArC), 149.81 (ArC), 154.17 (C=O), 154.64 (C=O). The mass spectrum of the compound **6b** in ESI mode showed the peak molecular ion m/z [M+H] at 381.9.

Compound 6c (2-methyl propyl-2 - {3- [(2-methylpropoxycarbonyl) amino]2-methyl benzyl} -1H-benzimidazole-l-carboxylate.)


Molecular structure

Spectral Analysis of synthesized compounds

The IR spectrum of the compound **6c** obtained in KBr phase and expressed in cm^{-1} showed peaks at 3444.2 (C-H aromatic), 3284.2-2875.3 (-NH str.), 1745 and 1694.2 (-O.CO.N str.), 1472.4, 1455.0, 1295.9, 1246.8, 1204.3, 1121.4, 1047.2, 982.6, 763.7, 742.5 (C-C aromatic). The ^1H NMR spectrum of the compound **6c** in DMSO-d6 is interpreted in 6 ppm and showed peaks at 0.919-0.964 (d, 6H, -C(CH₃)₂), 0.971-0.976 (d, 6H, -C(CH₃)₂), 1.87-1.93 (m, 1H, -CH), 2.05-2.10 (m, 1H, -CH), 3.83-3.85 (d, 2H, -CH₂), 4.23-4.26 (d, 2H, -CH₂), 4.51 (s, 2H, -CH₂), 6.80-7.96 (m, 7H, Ar-H), 8.89 (s, 1H, -NH). The ^{13}C NMR spectrum of the compound **6c** in 6 ppm and obtained in DMSO-d6 phase showed the following peaks: 13.03 (CH₃), 13.83 (CH₃), 18.84 (CH₃), 18.91 (CH₃), 27.14 (CH), 27.66 (CH), 35.00 (CH₃), 70.03 (OCH₂), 73.69 (OCH₂), 114.66 (ArC), 119.38 (ArC), 124.14 (ArC), 124.44 (ArC), 125.34 (ArC), 125.97 (ArC), 131.42 (ArC), 132.74 (ArC), 136.31 (ArC), 136.50 (ArC), 141.86 (ArC), 150.00 (ArC), 154.22 (C=O), 154.78 (C=O). The mass spectrum of the compound **6c** in ESI mode showed the peak molecular ion m/z [M+H] at 438.0.

Compound 6d (Phenyl 2- {3-[(phenoxy carbonyl)amino]-2-methyl benzyl}-1H-benzimidazole-1 carboxylate)
Molecular structure

Spectral Analysis of synthesized compounds

The IR spectrum of the compound **6d** obtained in KBr phase and expressed in cm⁻¹ showed peaks at 3444.2 (C-H aromatic), 3295.8-2955(-NH str.), 1748.3 and 1691.2(-O.CO.N str.), 1533.1, 1455.0, 1391.4, 1339.3, 1299.8, 1203.4, 1121.4, 1086.7, 1040.4, 969.1, 764.6, 742.5, 697.1 (C-C aromatic).

The ¹H NMR spectrum of the compound **6d** in 6 ppm and obtained in DMSO-d₆ phase showed the following peaks : 2.06 (s, 3H, -CH₃), 4.91 (s, 2H, -CH₂), 5.14 (s, 2H, -OCH₂), 5.4 (s, 2H, -OCH₂), 6.78-7.91 (m, 17H, Ar-H), 9.05 (s, 1H, -NH). The ¹³C NMR spectrum of the compound **6d** in 6 ppm and obtained in DMSO-d₆ phase showed the following peaks: 13.80(CH₂), 34.93(CH₂), 65.66(OCH₂), 69.26(OCH₂), 114.76(ArC), 119.39(ArC), 124.03(ArC), 124.21(ArC), 124.46(ArC) 125.41(ArC), 125.93(ArC), 127.86(ArC), 128.40(ArC), 128.65(ArC), 131.31(ArC), 132.67(ArC), 134.62(ArC), 136.35(ArC), 136.39(ArC), 136.92(ArC), 141.87 (ArC), 149.76 (ArC), 154.19 (C=O), 154.54 (C=O). The mass spectrum of the compound **6d** in ESI mode showed the peak molecular ion m/z [M+H] at 506.

CONCLUSION

A total of 4 compounds of benzimidazole carboxylate derivatives were prepared, characterized by IR, ¹H NMR, ¹³C NMR and Mass spectroscopy and assayed biological test for analgesic activity. The analgesic activity of the synthesized compounds was evaluated by tail-flick model as per standard experimental procedure. The test compounds were administered by making suspension using Tween-40 and normal saline at a dose of 50mg/kg b.w. through i.p. route. The standard drug, Diclofenac sodium at a dose of 10mg/kg b.w. & Aspirin at a dose of 50mg/kg b.w. was used on a parallel manner for comparison. The compound **6d** that possess maximum potency. The compounds **6c**, **6d** & **6b** which showed 2nd, 3rd & 4th most potent analgesic activity respectively. New benzimidazole carboxylate derivatives were synthesized and tested for analgesic activity. These newly synthesized benzimidazole carboxylate derivatives seemed to have analgesic like activity, so further

investigations are needed to identify the mechanism of action. New N-substituted benzimidazole derivatives were synthesized and tested for analgesic activity. These newly synthesized benzimidazole derivatives seemed to have NSAIDs like activity, so further investigations are needed to identify the mechanism of action. Also studying the anti-inflammatory activity of these compounds possibly could lead to positive results as many drugs share both analgesic and anti-inflammatory activity. New N-substituted benzimidazole derivatives were synthesized and tested for analgesic activity. These newly synthesized benzimidazole derivatives seemed to have NSAIDs like activity, so further investigations are needed to identify the mechanism of action. Also studying the anti-inflammatory activity of these compounds possibly could lead to positive results as many drugs share both analgesic and anti-inflammatory activity

REFERENCES

1. <http://goldbook.iupac.org> (2006).
2. Campaigne E; "Adrien Albert and the Rationalization of Heterocyclic Chemistry", J Chemical Education 1986, Volume 6, 860. doi:10.1021/ed063p860.
3. Katritzky A R and Boulton J A; "Advances in Heterocyclic Chemistry", Vols. 1 to 27, (Ed.), Academic Press, New York (1963-1980).
4. Weissberger A; "The Chemistry of Heterocyclic Compounds", Vols. 1 to 29, (Ed.), Wiley Interscience, New York (1950 to 1975).
5. Katritzky A R; "Physical Methods in Heterocyclic Chemistry", Vols. 1 to 5, (Ed.), Academic Press, New York (1963 to 1973).
6. Elderfield R C; "Heterocyclic Chemistry", Vols. 1 to 9, (Ed.), Wiley, New York (1950 to 1967).
7. Joule J A and Smith G F; "Heterocyclic Chemistry", Van Nostrand Reinhold Co., 2nd Ed, London (1978).

8. Weast R C and Astle M J; "C. R. C. Handbook of Chemistry and Physics", (Eds.), C. R. C. Press, Inc., 63rd Ed, Florida U. S. A. (1983).
9. Fletcher J H, Dermer O C and Fox R B; "Nomenclature of Organic Compounds, Principles and Practice", American Chemical Society Washington, D. C., Adv. Chem. Ser.
10. Katritzky A R; "Handbook of Heterocyclic Chemistry", Pergamon Press, New York (1985).
11. Gilchrist T L; "Heterocyclic Chemistry", Pitman London (1985).
12. McNaught in A. D; "Advances in Heterocyclic Chemistry", Vol. XX, Katritzky A R and A J, Boulton (Eds.), Academic Press, New York (1976) 175.
13. Newkome G R and W WPandler; "Contemporary Heterocyclic Chemistry", John Wiley, New York (1982).
14. Katritzky A R; "Comprehensive Heterocyclic Chemistry", Vol. 1-8.
15. Coffey B S; "Rodd's Chemistry of Carbon Compounds", Vol. IV, Part A, (Ed.), Elsevier, London (1973).
16. H. Debus, *Ann. Chem.*, 107, 199(1858).
17. A. Hamzch, *Ibid.*, 107, 249 (1888).
18. H. A. Barker, R. D. Smyth, H. Weissbach, J. I. Toohey, J. N. Ladd, & B. E. Volcani, *Journal of Biological Chemistry*, 235 (2), 480 (1960).